CIRCULATING TUMOR CELLS (CTC) TECHNOLOGIES
A MARKET INSIGHT REPORT

Table of Contents

1. SCOPE AND METHODOLOGY
 1.1 Scope of the Study
 1.2 Research Methodology
 1.3 Units and Currency

2. REPORT SYNOPSIS
 2.1 Circulating Tumor Cells (CTC) Technologies – Introduction
 Circulating Tumor Cells (CTC) Technologies – Timeline
 Biomarkers
 CTC as a Biomarker
 Process of Metastatic Development, CTCs and Cancer Stem Cells
 CTCs in Blood and DTCs in Bone Marrow
 Circulating Tumor Cells and Their Clinical Significance
 Detection of CTCs and its Significance
 Epithelial Mesenchymal Transition
 Technologies for Isolation and Characterization of CTCs
 Cell Free Nucleic Acids based CTC detection
 CTC Detection on Physical Properties Basis
 Antibody Capture Technology
 Miscellaneous CTC Detection Strategies
 CTC and Prostate Cancer
 CTC in Breast Cancer
 CTCs in Ovarian Cancer
 CTC Diagnosis & Prognosis
 CTCs as Therapy Response Marker
 2.2 Segmentation

 Exhibit 1. Segmentation of Global CTC Technologies Market by Cancer Type and by Function

2.3 CTC Technologies - Global Market Analysis
 Exhibit 3. List of Major Global Companies – CTC Technologies

3. MARKET DYNAMICS
 3.1 CTCs - FOREWORD
 CTCs – Impact

 3.2 Global CTC Technologies Market Analysis
 Exhibit 5. CTC Technologies – Global Market Shares (2012, 2018 & 2022) for North America, Europe, Asia-Pacific and Rest of World
 Exhibit 6. Circulating Tumor Cells - Global Market Analysis (2010 - 2022) for Per Test Cost, Number of Tests and Cancer Incidence
 Cancer – The Global Scene
 Exhibit 7. List of Product/Technologies for CTC Analysis

 3.3 North American CTC Technologies Market Analysis

 3.3.1 United States Market Analysis
Table of Contents

Cancer Statistics

Exhibit 10. United States Cancer Incidence – Estimated Cases and Deaths in 2013

Cancer Care Cost

Competitor Overview

3.4 European CTC Technologies Market

Market Snapshots

Cancer Statistics

Competitor Overview

3.5 Asia-Pacific CTC Technologies Market

Competitor Overview

3.6 Rest of World CTC Technologies Market

Competitor Overview

3.7 Analysis by Cancer Type

Exhibit 18. CTC Technologies by Type – Global Market – Historic, Current, and Forecast (2010 - 2022) in US$ Million for Prostate Cancer, Breast Cancer and Other

Exhibit 19. CTC Technologies by Type – Global Market Shares (2012, 2018 & 2022) for Prostate Cancer, Breast Cancer and Other

3.7.1 United States Market for CTC Technologies in Cancer Types

Exhibit 20. CTC Technologies by Type – United States Market – Historic, Current, and Forecast (2010 - 2022) in US$ Million for Prostate Cancer, Breast Cancer and Other

Exhibit 21. CTC Technologies by Type – United States Market Shares (2012, 2018 & 2022) for Prostate Cancer, Breast Cancer and Other

3.8 Analysis by Function

3.8.1 United States Market for CTC Technologies in Cancer Function

3.9 Circulating Tumor Cells (CTC) Technologies – Market Outlook

4. COMPETITOR DYNAMICS

4.1 CTC Technologies Providers – Competitor Profiles

- Abnova Corporation (Taiwan)
- AdnaGen AG (Germany)
- Advanced Cell Diagnostics, Inc. (USA)
- Affymetrix, Inc. (USA)
- ANGLE plc (UK)
- ApoCell, Inc. (USA)
- Applied Precision, Inc. (USA)
- Applied Spectral Imaging, Inc. (USA)
- Atossa Genetics, Inc. (USA)
- AVIVA BioSciences Corporation (USA)
- BioCEP Ltd. (Israel)
- Biocept, Inc. (USA)
- BioFluidica, Inc. (USA)
- BioView Ltd. (Israel)
- Cancer Research UK Manchester Institute (UK)
- Canopus Bioscience Ltd. (Canada)
- CellTraffix, Inc. (USA)
- Celsee Diagnostics (USA)
- Clearbridge BioMedics (Singapore)
- Creatv MicroTech, Inc. (USA)
- Cynvenio Biosystems, Inc. (USA)
- CytoTrack ApS (Denmark)
- DTU Fotonik (Denmark)
- EMD Millipore Corporation (USA)
- eOptra LLC (USA)
- Epic Sciences, Inc. (USA)
- F. Hoffmann-La Roche Ltd. (Switzerland)
- Fluidigm Corporation (USA)
- Fluxion Biosciences, Inc. (USA)
- Genoptix, Inc. (USA)
- GILUPI GmbH (Germany)
- Greiner Bio-One GmbH (Germany)
- iCellate® AB (Sweden)
- Ikonisys, Inc. (USA)
- IMEC (Belgium)
- IV Diagnostics, Inc. (USA)
- Janssen Diagnostics BVBA (Belgium)
- Janssen Diagnostics, LLC (USA)
- Laboratory Dr. Pachmann (Germany)
- Miltenyi Biotec, Inc. (USA)
- OncoGenex Pharmaceuticals, Inc. (USA)
- OncoVista Innovative Therapies, Inc. (USA)
- Progenics Pharmaceuticals, Inc. (USA)
- R.G.C.C. International GmbH (Switzerland)
- RareCells SAS (France)
- RareCyte, Inc. (USA)
- ScreenCell (France)
- Silicon Biosystems SpA (Italy)
- SIMFO GmbH (Germany)
- STEMCELL Technologies, Inc. (Canada)
- TeloVISION, LLC (USA)
- Transgenomic, Inc. (USA)
- Vitatex, Inc. (USA)

4.2 Significant Market Developments

- Fluxion Biosciences Launches IsoFlux™ NGS Assay Kits for Circulating Biomarker Detection
- Biocept Introduces Clinical Research Services for Biomarker Detection in Circulating Tumor DNA
DeNovo Sciences Introduces JETTA100, Its First Commercial Instrument and Consumables
Thermo Fisher Acquires Life Technologies
fluxion Biosciences Includes Clinical Sample Procurement to Expand IsoFlux Discovery Services
Epic Sciences and LabCorp Collaborate to Expedite European Clinical Sample Processing for CTC Technology
National Cancer Centre Singapore Partners with Clearbridge BioMedics Establishes “Singapore CTC CoRE”

5. PRODUCT/TECHNOLOGY RESEARCH

5.1 Circulating Tumor Cells (CTCs) – Key Observations
CTC Detection
The Hampering Facts
CTC Detection – Molecular Targets
CTC Enumeration
Exhibit 26. Novel Methods for Circulating Tumor Cell Identification and Main Conclusion(s)
CTC Enrichment
Exhibit 27. CTC Enrichment Methods
CTC Capture
CTC Isolation
Microfluidic Devices
CTCs and Cancer Stem Cells (CSCs)
Signaling Pathways
Surface Markers
Cancer Biomarkers
Tumor Marker
Cells as Biomarkers
Circulating Tumor Cells (CTCs) – Cancer Biomarkers
Functions of Biomarkers
Metronomic Chemotherapy for Cancer Treatment
Dispersal of Tumor Cells
Biology of Circulating Tumor Cells
Potential and Proliferative activity of Circulating Tumor Cells
CTCs and Epithelial Marker Genes
CTCs and Mesenchymal Transition
Stem Cell-like phenotype of CTCs
Changed Geno/Phenotype of CTCs when compared to Primary Tumor
Epithelial Mesenchymal Transition
Presence of CTCs in Epithelial Mesenchymal Transition and Disseminated Disease
Mesenchymal and Cancer Stem Cells
qPCR Expression Markers
Characterization of Protein Expression and Signaling in CTCs
Significance of Circulating Tumor Cells
Detection of CTCs and its Significance
CTC-Receptors
Major Causes of Metastasis Cancer
Progesterone receptor Positive
HER-2 Positive Receptor
Triple Negative Type of Tumor
Mice models for CTC studies
CTC Count Prominence
Recent Technique on Cancer Prognosis
Immunofluorescent Staining Technique
FAST scanning
TABLE OF CONTENTS

SERS Technology
CellSearch® System
Biochip Platforms
Photoacoustic Spectroscopy
Immunomagnetic Separation
Immunohistochemistry
CISH Technique
FISH Technique
Nanotechnology
Tagged-Amplicon Sequencing Technique
CTC Technologies
Techniques for Detection and Manipulation
Function-Based Methods
Nonfunction-Based Techniques
In Vivo CTC Manipulation Techniques
Challenges to In Vivo Manipulation Devices
Advanced CTC Detection Technologies Based on Genomics
CTC and Cancer Type
Introduction
Breast Cancer Therapy using Circulating Tumor Cells
CTC found in Early Metastasis
CTC Detection Methods
CTCs as a Biomarker in Advanced Breast Cancer
Detection of CTCs in Prostate & Colorectal Cancers
CTCs in Ovarian Cancer
Exhibit 28. Cancer Type and Respective Detection Methods and Markers
CTC Diagnosis and Prognosis
Circulating Tumor Cell based PSA as a Biomarkers in Prostate Cancer Prognosis
Exhibit 29. Clinical Studies Evaluating Circulating Tumor Cells as a Prognostic Tool
CTCs as Therapy Response Marker
CTCs in Custom-Made Medicine

5.2 Circulating Tumor Cells (CTC) Technologies - Research Briefs
Researchers Discover Cancer Cell Mechanism for Metastatic Brain Tumor Development
DNA Shed by Tumors have Potential for Non-Invasive Screening, Diagnosis
Clinical Waste May be Useful to Monitor Treatment Response in Ovarian Cancer
Liquid Biopsy - Enhances Cancer Diagnosis and Treatment
Circulating Tumor Cell Enumeration Separation and Isolation of Live Tumor Cells
Metastasis Stem Cells Found in Blood of Breast Cancer Patient
Human Scabs is an Inspiration for Novel Bandage to Expedite Healing
Circulating Breast Tumor Cells Signature Found
Third Generation Gadget to Help Capturing Circulating Tumor Cells
More….

6. CORPORATE DIRECTORY
7. PATENTS
8. CLINICAL TRIALS
1. SCOPE AND METHODOLOGY

Scope of the Study

RI Technologies brings an informative update on the Global Circulating Tumor Cell (CTC) Technologies market. This report on Circulating Tumor Cells (CTC) Technologies gives a market insight into technologies and services used for cancer detection. The market is analyzed by Cancer type into Prostate, Breast and Other; and by Function into Prognostics, Diagnostics and Therapy Management. The report serves as a guide to CTC industry, covering more than 200 companies that are engaged in CTC studies/screening, products and services. Major Contract Research Organizations, Research Institutes and Universities serving the CTC market are also covered in the corporate directory section of this report. Information related to recent product releases, product developments, partnerships, collaborations, and mergers and acquisitions is covered in the report. Compilation of Worldwide Patents related to CTC Technologies is also provided. A global perspective is presented along with regional analysis covering the regions of North America, Europe, and Asia-Pacific with 29 exclusive graphically represented exhibits.

The Circulating Tumor Cell (CTC) Technologies report is an ideal research tool providing strategic business intelligence to the corporate sector. This report may help strategists, investors, cancer product development companies, and biotechnology companies in--

- Gauging Competitive Intelligence
- Identifying Key Growth Areas and Opportunities
- Understanding Geographic Relevance to Product
- Knowing Regional Market Sizes and Growth Opportunities and Restraints
- Keeping Tab on Emerging Technologies
- Equity Analysis
- Tapping New Markets
2. REPORT SYNOPSIS

CTC Technologies – Introduction

Circulating Tumor Cells (CTCs) are assuming importance as a biomarker for companion diagnostics and early detection for cancer treatment. There are many unmet needs in cancer drug development. Studying of tumor clusters, cell circulation, assessing and correlating types of tumors with their functionalities are vital aspects of CTC studies. Hundreds of clinical studies testify the requirement of detection and molecular characterization of CTCs. Risk estimation, therapy monitoring, identification of targets, and understanding metastatic developments are essential research areas. CTCs are known to represent the biology of cancer, and high counts of CTC lead to negative prognosis. Phenotyping and genotyping CTC and further studies will reveal whether CTC can be used for directing general or targeted anti-cancer therapy.

CTCs were first identified in 1869 in an autopsy of the peripheral blood of cancer patients. The widely accepted definition of CTC is “cells associated with cancer in the blood of patients with solid tumors”. CTC cells have a nuclei, cytokeratin+ EpCAM+, and CD45-. Research studies suggest that CTC in other rare cancer have CD45+ cytokeratin+ cells. Oncology clinical trials include CTC assays while choosing a platform, method development, validation, and clinical trial implementation.

Personalized cancer care is possible with CTC detection and therapeutic research. The fluid phase of solid tumors is an emerging clinical tool in personalized cancer care and is an important third microenvironment in the development and progression of carcinomas. The HD-CTC assays (Scripps Research Institute) help in investigating the metastatic pathways in cancer patients and give more information on disease progression. Cancer cells that originate from primary or secondary sites circulate in the blood and either come out or lead to new tumor growth. Efforts are ongoing on translational research to identify the origin of CTCs, their circulation patterns, their destinations, and their influence on disease progression. CTCs can be now used as biopsy material and as a biomarker. Using molecular and cellular approaches, CTCs can be subtyped at the single cell level.

CTCs in Blood and DTCs in Bone Marrow

CTC is a good diagnostic marker but these might not provide the same information as the DTCs. A comparative study of CTCs and DTCs has not been done to a great extent. Firstly the number of CTCs obtained was lower than that of DTCs but this was probably dependent on the procedure used for CTC/DTC detection. There are some who believe that the CTC count was higher in bone-marrow positive cases and high-risk patients. Both CTCs and DTCs have been studied in patients at the same time but the concordance rates have been different. The differences might have been cased due to difference in technology used for study CTC and DTCs. Incidentally the disparity of CTC and DTCs count was seen in patients after adjuvant therapy and not before that and this indicates a difference in sensitivity of CTCs and DTCs to chemotherapy. DTCs are more likely to display stress response proteins that may help these to survive chemotherapy.

Circulating Tumor Cells and Their Clinical Significance

When a tumor progresses into malignant cancer, it sheds some of its cells which adhere to the outer layer of the blood vessel and then invade into the blood stream. These cells are referred to as circulating tumor cells or CTCs. These cells get lodged in another tissue or organ at a distant site and transform those cells
into malignancy. The result is development of cancer at a different site in the patient. In other words, the CTCs are the progenitors of cancer at a new site in the patient’s body. This phenomenon was named by Recamier as metastasis in 1800 itself. Metastasis is the major cause of death from cancer. The presence of CTCs was reported in the blood of a cancer patient as early as 1869 by Thomas Ashworth.

It is understood that initiation of breast cancer occurs generally when the size of the primary tumor is around 0.2 cm³. Some of the tumor cells undergo genetic changes that facilitate detachment from the basement membrane, pass through the extracellular matrix, and penetrate the capillary to get into the blood stream. After being transported by blood they get attached to the endothelium of blood vessel and escape from the blood vessel into the surrounding tissue. If the microenvironment there is favourable they begin to induce angiogenesis and initiate the onset of metastatic tumor.

Detection of CTCs and its Significance

Oncologists believe that detection of cancers other than blood cancers and their characterization would be greatly facilitated by identification of CTCs originating from epithelial tumors. This approach could be a suitable non-invasive biopsy that can substitute the conventional tumor detection and is largely applicable to breast cancer, prostate cancer, and colorectal cancer. In many breast cancer patients bone marrow shows the presence of certain cells known as disseminated tumor cells. These cells are different and do not respond to the chemotherapy given to the patient to control the breast cancer. They are potential metastatic cancer cells and are responsible for the recurrence of cancer elsewhere in the body despite chemotherapy treatment given for the primary cancer. Therefore, the importance of detection and characterization of CTCs need not be overemphasized.

In breast cancer a positive correlation between bone marrow CTCs and cancer prognosis has been supported by some researchers and negated by others. This controversy may probably be attributed to the differences pertaining to the methodologies followed for detection of these cells. Research works reveal that it is not necessary that every CTC should culminate in the formation of metastasis. In fact, many of these detached cells are destroyed while circulating in the blood. However, the early detection of these cells may guide the physician to decide on the appropriate course of treatment that would prevent metastatic cancer. In fact, it is difficult to detect CTCs that exist in low concentration in the range of one cell per million hematopoietic cells. It is imperative that evolving accurate analytical methods is the need of the hour. At present the prediction with regard to the onset of metastasis in patients treated for breast cancer gives only statistical figure pertaining to a population. But what is actually needed is to predict the possibility for recurrence of this disease at a new site in each individual patient.

2.2 Segmentation

Exhibit 1. Segmentation of Global CTC Technologies Market by Cancer Type and by Function

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>Diagnostics</td>
</tr>
<tr>
<td>Breast</td>
<td>Prognostics</td>
</tr>
<tr>
<td>Other*</td>
<td>Therapy Management</td>
</tr>
</tbody>
</table>

Other includes Colon, Pancreatic, etc.

©RIT, 2017
2.3 CTC Technologies - Global Market Analysis

Global CTC Technologies market is predicted to reach US$ XX.XX billion in 2020, at a CAGR of XX.XX %, from an estimated US$ XX.XX billion in 2014. The market is further projected to cross US$ XX.XX billion mark by 2022.

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2011</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2012</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2013</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2014</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2015</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2016</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2017</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2018</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2019</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2020</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2021</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2022</td>
<td>XX.XX</td>
</tr>
<tr>
<td>CAGR% (2010 – 2014)</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2015</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2016</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2017</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2018</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2019</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2020</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2021</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2022</td>
<td>XX.XX</td>
</tr>
<tr>
<td>CAGR% (2015-2022)</td>
<td>XX.XX</td>
</tr>
</tbody>
</table>

© RIT Figures, 2017
3. MARKET DYNAMICS

3.2 Global CTC Technologies Market Analysis

North America is the largest CTC Technologies market holding share of \(XX.XX\%\) worth US$ \(XX.XX\) million in 2014. At a CAGR of \(XX.XX\%\), the North American market is expected to reach about US$ \(XX.XX\) billion in 2018 and about US$ \(XX.XX\) billion by the year 2022. Asia-Pacific is projected to represent the fastest growing market with a CAGR of \(XX.XX\%\), followed by Europe with \(XX.XX\%\) for the analysis period 2015-2022. The global market shares of North America, Europe, Asia-Pacific and Rest of World are expected to be \(XX.XX\%\), \(XX.XX\%\), \(XX.XX\%\), and \(XX.XX\%\) respectively by the year 2022.

<table>
<thead>
<tr>
<th>Year/Region</th>
<th>North America</th>
<th>Europe</th>
<th>Asia-Pacific</th>
<th>Rest of World</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2011</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2012</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2013</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2014</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>(CAGR%\ (2010-2014)\</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2015</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2016</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2017</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2018</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2019</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2020</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2021</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>2022</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
<tr>
<td>(CAGR%\ (2015-2022)\</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
<td>(XX.XX)</td>
</tr>
</tbody>
</table>

© RIT Figures, 2017
Exhibit 5. CTC Technologies – Global Market Shares (2012, 2018 & 2022) for North America, Europe, Asia-Pacific and Rest of World

<table>
<thead>
<tr>
<th>Year/Region</th>
<th>North America</th>
<th>Europe</th>
<th>Asia-Pacific</th>
<th>Rest of World</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2018</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2022</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
</tbody>
</table>

© RIT Figures, 2017
3.7 Analysis by Cancer Type

In the global market, CTC Technologies for Prostate cancer has the largest share with \(xx.xx \% \) in 2014 and is worth around US$ \(xx.xx \) million. The value is expected to rise to US$ \(xx.xx \) million by 2015, and is further projected to reach a high US$ \(xx.xx \) million in the year 2020. Also, the market value of Breast Cancer CTC Technologies is expected to grow at the fastest rate with a CAGR of \(xx.xx \% \).

Exhibit 18. CTC Technologies by Type – Global Market – Historic, Current, and Forecast (2010 - 2022) in US$ Million for Prostate Cancer, Breast Cancer and Other

<table>
<thead>
<tr>
<th>Year/Cancer Type</th>
<th>Prostate Cancer</th>
<th>Breast Cancer</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2011</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2012</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2013</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2014</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>CAGR% (2010-2014)</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2015</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2016</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2017</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2018</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2019</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2020</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2021</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>2022</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
<tr>
<td>CAGR% (2015-2022)</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
<td>XX.XX</td>
</tr>
</tbody>
</table>

© RIT Figures, 2017
3.9 Circulating Tumor Cells (CTC) Technologies – Market Outlook

Global CTC Technologies market is predicted to reach US$ XX.XX billion by 2022, from an estimated US$XX.XX billion in 2014.

The biggest technical challenge is CTC detection despite the continued development of many new technologies. The key need is for a technology that will detect the real metastasis-initiating CTC which in turn will trigger distant metastases. This may be a combination of complementary technologies or even several technologies optimized for specific tumor types. CTC enrichment depends on the different properties of CTCs that distinguish them from the surrounding normal hematopoietic cells; physical properties; and biological properties. Most of the current technologies are still based on epithelial cell adhesion molecule (EpCAM) expression. New emerging technologies may try to capture EpCAM-negative CTCs.

4. COMPETITOR DYNAMICS

4.1 CTC Technologies Providers – Competitor Profiles

Abnova Corporation (Taiwan)
AdnaGen AG (Germany)
Advanced Cell Diagnostics, Inc. (USA)
Affymetrix, Inc. (USA)
ANGLE plc (UK)
ApoCell, Inc. (USA)

More….

4.2 Significant Market Developments

Fluxion Biosciences Enters into Liquid Biopsy Collaboration with University Of Texas Health Science Center
Biocept and MedStar Georgetown University Hospital Collaborates for Liquid Biopsy Study
Menarini-Silicon Biosystems Launches DEPArray™ NxT Digital Cell-Sorting System
Fluxion Biosciences Launches IsoFlux™ NGS Assay Kits for Circulating Biomarker Detection
Biocept Introduces Clinical Research Services for Biomarker Detection in Circulating Tumor DNA
DeNovo Sciences Introduces JETTA100, Its First Commercial Instrument and Consumables
Thermo Fisher Acquires Life Technologies
Fluxion Biosciences Includes Clinical Sample Procurement to Expand IsoFlux Discovery Services
Epic Sciences and LabCorp Collaborate to Expedite European Clinical Sample Processing for CTC Technology
National Cancer Centre Singapore Partners with Clearbridge BioMedics Establishes "Singapore CTC CoRE"

More…….
5. PRODUCT/TECHNOLOGY RESEARCH

Circulating Tumor Cells (CTCs) – Key Observations

CTCs and their biological relevance are not free from controversies. Technical issues related to detection and quantification methods, shedding from primary sites, and heterogeneous cell populations are some of the areas of focus. Though millions of CTC are shed during the course of a given cancer, some may gain dormancy for a few years and may regain activity in generating metastasis.

Single circulating tumor cells captured with Geometrically Enhanced Differential Immunocapture (GEDI) are being probed to identify genomic content and functional response to chemotherapeutics. GEDI microdevices are used to isolate CTCs from patients with prostate and pancreatic cancer while rejecting contaminating leukocytes. Functional response is probed by using both genomic analysis and in situ immunostaining.

CTC Detection

The Hampering Facts

- lack of concordant results obtained from the various detection methods
- Isolation and detection is difficult owing to their low concentration in bone marrow or blood
- CTC detection is a technical challenge owing to the presence of other cellular contaminants, including other circulating blood cells and normal epithelial cells

Exhibit 1. Novel Methods for Circulating Tumor Cell Identification and Main Conclusion(s)

<table>
<thead>
<tr>
<th>Study</th>
<th>CTC Enumeration Method</th>
<th>Main Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antolovic et al.</td>
<td>Immunomagnetic enrichment and CK20 RT-PCR</td>
<td>The clone used as an antibody for EpCAM-based enrichment alters results significantly</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>KRAS membrane array</td>
<td>KRAS membrane array is sensitive and specific when used on CRC blood samples.</td>
</tr>
<tr>
<td>Findeisen et al.</td>
<td>346 candidate genes</td>
<td>SERPINB5 expression is elevated in CRC blood</td>
</tr>
<tr>
<td>Gervasoni et al.</td>
<td>CK20, CK19, CEA, and GCC RT-PCR</td>
<td>CTCs can be predicted by CK20, CK19, CEA, and GCC together</td>
</tr>
</tbody>
</table>

More...

© RIT, 2017
About RI Technologies

RI Technologies is a premier source of market research on the Biotechnology & Healthcare sector. We emphasize on factual insights and forecasts with maximum global coverage. RI Technologies is constantly monitoring the biotechnology & Healthcare industry, tracking market trends, and forecasting industry based on specialized analysis. The life sciences sector is an ever growing marketplace with emerging technologies in areas of discovery, design and development.

Research – As Good as the Methodology is!

- Gauging Competitive Intelligence
- Identifying Key Growth Areas and Opportunities
- Understanding Geographic Relevance to Product
- Knowing Regional Market Sizes and Growth Opportunities and Restraints
- Keeping Tab on Emerging Technologies
- Equity Analysis
- Tapping New Markets

© COPYRIGHT

The copyright and publication rights to all RI Technologies' reports and other products are the property of the company. Plagiarism of any kind accounts to violation of copyright laws. Any type of reproduction of the material without express permission is not allowed. The buyer, under no circumstances, shall license, resell or repackage, or sell data without prior permission of the company.

DISCLAIMER

RI Technologies sells content in good faith. The company is not liable to the buyer for any implications arising out of the usage of data for any particular purpose. The company makes no representations or warranties for the accuracy or completeness of the data. While extreme caution and effort is practiced for data compilation and presentation, the company does not accept any responsibility for findings in the study which are a cumulative effort of primary and secondary research resources. The studies do not endorse or promote any product or company. RI Technologies, its affiliates, partners, distributors, and contractors are not liable for inaccuracies or incompleteness of the reports. User discretion is recommended for the usage of the data.
Consultative Approach! Collaborative Analysis!

<table>
<thead>
<tr>
<th>Potential Client Speak –</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"I need to focus on strategic opportunities"</td>
<td>- Sales & Marketing Professional</td>
</tr>
<tr>
<td>"Am I spending on the right content?"</td>
<td>- Resource Librarian</td>
</tr>
<tr>
<td>"I require easy methods to search and share reports and insights"</td>
<td>- Market Research Professional</td>
</tr>
<tr>
<td>"I need market research that helps us make strategic decisions, keep pace and lets us keep control too"</td>
<td>- Company Head</td>
</tr>
</tbody>
</table>

All your questions will find answers in our reports.

You may order this [report here](https://www.researchimpact.com).

If you have any specific data requests, you may order a [custom research](https://www.researchimpact.com) order with us too.

Thank You. We greatly appreciate your time and effort.

Contact Us:

Research Impact Technologies

<table>
<thead>
<tr>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2-1133/B/2, New Nallakunta Hyderabad - 500 044 Telangana, India</td>
<td>(+91) 040 40027663 (+91) 9676-994-272</td>
</tr>
<tr>
<td></td>
<td>contactus@researchimpact.com</td>
</tr>
</tbody>
</table>

https://www.researchimpact.com